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Abstract— Motor rehabilitation is in increasingly high de-
mand to deal with minor functional motor impairments re-
sulting from stroke, cerebellar ataxia, or Parkinson’s disease.
Juggling physiotherapy has shown to induce brain plasticity
and to improve coordination and balance in this context. The
physiotherapy, however, relies on large number of repetitions
to be effective which prompts to deploy robots to release the
burden on therapists both in terms of time as well as physical
strain. This paper provides a framework to enable juggling
games for patients in interacting with robots through Virtual
Reality (VR). A set of throwing motions is recorded from the
therapist and is retargeted to the humanoid robot COMAN’s
wrist. The respective whole-body motion is then solved in a
stack of Quadratic Programs (QP) in a real-time architecture
that integrates OROCOS and Gazebo. The resulting motion
is finally streamed to VR for animation of the robot and the
thrown ball, which the user can catch in VR using a controller
device. We regard the VR setting as an essential step towards
physiotherapeutic robotic juggling, because it ensures safety of
the patients and effective testing of the methods and already
has potential for actual therapeutic intervention. The control
framework, however, is already validated in this paper for
switching to full real-time operation on the physical robot.

I. INTRODUCTION

The demand for specific physiotherapy procedures which
deal with functional motor impairments continuously grows
due to the aging world population and the increasing number
of patients who survive medical emergencies like stroke or
suffer from cerebellar ataxia and Parkinson’s disease. Such
procedures aim to enhance the functional ability and to restore
involvement in daily social life, but they need to employ an
intensive intervention to be effective [1]. To realize the latter
is challenging because it requires task-specificity and high-
level of motivation, and is primarily based on rote exercise.
A rehabilitation therapy thus often involves daily one-on-
one interactions with the therapist and can last for extended
periods of time. Overall, the physiotherapy process places
a significant burden on the therapists and on the healthcare
systems, prompting researchers and clinicians to increasingly
consider robotic devices in motor rehabilitation.
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Fig. 1. User equipped with Head Mounted Display and controllers
performing the virtual ball catching task.

The advantages of using robotic systems are their ability to
provide continuous repetitive high-intensity therapy, detailed
and accurate measurement of patients performance, precise
reaction to patients motion and continual assessment of
changes in motor function through performance measures.
The proper understanding of the patient’s responses can then
be used to encourage correct movements and improve motor
function and discourage incorrect movements, because the
latter can lead to a deterioration of the motor behavior. Robotic
assistance in the rehabilitation task enables the therapist to
fully focus on assessing the patients movement or simply
to treat more patients effectively. Current robotic systems
for motor impairment rehabilitation are custom-built devices
focusing mostly on the upper extremity. Many of these
robotic rehabilitation devices utilize gamification to engage
and motivate the patient throughout the intensive procedure.
A wide range of systems with various DOF (1 to 18) have
been introduced for hand rehabilitation (wrist and fingers).
Burdet et al. [2] conducted a detailed review of these using
8 out of 30 reported robotic devices. They classified the
devices into different categories according to their design,
usage, DOF, therapy schedule, results and other features. The
clinical studies indicate that robot-assisted hand rehabilitation
can provide a reduction of the motor impairments in arm and
hand and improves the functional use of the affected hand.



They emphasize that the outcomes are preliminary but very
promising. The robotic devices, however, are rather simple
and do not require a complex controller.

Several papers have reviewed the performance and effi-
ciency of robot-assisted therapy [3], [4]. They indicate that
successful motor rehabilitation requires early training of upper
body which is an intensive and task-specific activity. Early
robotic training can be a suitable alternative. The 3-DOF
NeReBot, for example, is programmed to perform repetitive
assistive movements of the proximal upper limb (shoulder
and elbow) in [4].

Introducing a humanoid robot to the robotic rehabilitation
process could help to further increase the patients motivation
by introducing the social aspect to the process. In [5], [6],
the humanoid robot Nao is utilized for children with cerebral
palsy and arm impairment to engage them in a movement
imitation game. Nao enhanced motivation and thus supported
rehabilitation.

A well established therapeutic training process that could
benefit from robotic assistance is one that utilizes coordinative
games through throwing and catching balls, a goal-directed
functional task that is familiar and motivating, yet challenging
and intensive. It has been shown that this task is not only
motivating, demanding and induces brain plasticity [7], [8],
but since it requires the coordination of arm movement and
postural control, it improves coordination and balance [1].
Furthermore, studies exploiting observation and response to
natural ball movement, enhance the arm motion and trunk-
arm coordination of Parkinson’s patients [9], [10]. Therefore,
ball throwing and catching tasks appear to be an appropriate
training procedure to improve patients’ motor functions.

An important feature of this therapy is that the complexity
can be scaled by using up to three balls, varying the catching
technique (under- and over-hand), employing deceptive throw-
ing, or by altering the order of throwing and catching when
using multiple balls. The therapist has too assess the patient’s
performance and adjust the throws to vary the difficulty of
the task throughout the rehabilitation procedure accordingly.
Assessment and creation of variation in throwing difficulty
and accuracy could be effectively reproduced and possibly
improved by the robotic system.

This paper introduces the technological means for our
longer-term goal to realize human-humanoid therapeutic
juggling, a term we use to summarize the described coor-
dinative games through throwing and catching balls. While
in the first stage we achieve real-time synthesis of robot
throwing in Virtual Reality, we meet from the outset the
requirements that arise from scaling up the system to the
real patient-robot interaction (Sec. II). Thus the VR setup
allows to test feasibility and physical constraints safely and
effectively before integrating the real robot, but with the
actual real-time controller already in-the-loop. Furthermore,
this intermediate VR-system has already significant value in
itself for experimentation, verification and possibly actual
therapy, as we will discuss in the text and the conclusion
section. Note that this goes significantly beyond plain VR
systems, where for instance automatic coaching of physical

training [11] was proposed, but respective avatars do not need
to implement physically realistic and feasible robot motion.

Our system retargets demonstrations of a therapist’s throw-
ing trajectories to be kinematically feasible for COMAN. It
uses the retargeted motions as input to a generative learning
system that enables real-time synthesis of throwing motions
for particular targets (Sec. III). The synthesized motions serve
as reference input in a stack of quadratic programs (Sec. IV)
that provide the COMAN whole-body motion in real-time and
in a control framework that allows for transparent switching
between dynamic simulation and the real robot. The resulting
physically feasible and realistic motion is finally animated
in VR (Sec. V). Finally, we provide performance validations
and illustration of the complete system in Sec. VI).

II. REQUIREMENTS AND SYSTEM ARCHITECTURE

Given the ambitious goal of realizing therapeutic interven-
tion with actual patients, a significant number of requirements
arise on functional and technological levels.

In short these requirements can be listed as
R0 Safety: The system must be safe for the user at all times

and under all conditions.
R1 Flexibility: The robot throwing must be versatile and

generated on-the-fly in real-time, in order to provide the
capability for reactive and variable behavior.

R2 Realtime: The motion generation and robot control must
run at 1 kHz for the real robot. Furthermore, Humans’
perceive visual cues as fast as 13 milliseconds [12].
While this varies on individual basis, the VR backend
must run at a minimal frequency of 60 Hz to evoke the
impression of natural movement.

R3 Platform independency: Switching between robot sim-
ulation and real robot as well as easy adaption to new
robots is desired without imposing structural changes in
the system architecture.

R4 Reusability: Given the complexity of the overall system,
the architecture must support modular implementation
and easy deployment and integration of components.

Figure 2 depicts a sketch of the main system components
and their connections. We describe their setup and interplay
with respect to the requirements.

Patient safety (R0) is naturally of utmost importance. In the
VR scenario, there is not direct interaction with the robot and
the patients can stand or sit dependent on their impairments.
Additional guarding mechanism for boundary limitations are
possible and should be implemented according to patients’s
mobility. For the real robot, a sufficient safety margin will be
enforced by mechanical restraints, such that it can not touch
a patient even in the case of a technical failure.

The motion generation part (Figure 2, left) provides the
necessary flexibility (R1) to vary the throwing as required in
the therapeutic scenario. It implements a real-time capable
motion synthesis that can produce input wrist trajectories
for the robot controller within the control cycle as was
demonstrated in [13]. It is, however, non-trivial to provide
kinematically feasible and on-target throws, as will be
described further in Sec. III. The system can use either offline



Fig. 2. Proposed architecture: All communications are managed using real-time framework “Orocos-RTT”. This implementation allows transparent
switching between simulated and real robot.

determined targets or, in later stages, evaluate feedback online
(dashed line in Figure 2). While the latter is not integrated
in the system yet, the feedback pipeline has already been
tested independently [13] and will be added in the future
development. For the reported performance tests, we simply
generate a set of trajectories offline and replay them. It adds
further flexibility that in principle any motion generator could
be used to provide input to the robot controller, given it
matches the requirements on real-time capability. Ideally,
such motion generation will then be included and deployed
as a component in the central, real-time component based
controller.

Regarding real-time (R2), the motion generation system,
the central real-time controller and the VR communicate
via the robotics service bus RSB [14], where the VR is
soft-real-time and currently running at 90 Hz. The actual
QP-based controller is realized in CoSiMA1, an Orocos [15]
based execution framework developed in the H2020 project
CogIMon2. It features a component-based architecture, where
all inter-component communications are handled by RTT.

CoSiMA facilitates transparent switching between the real
and simulated robot (R3) by providing identical interfaces
for both by means of Orocos components that wrap the
respective low level drivers. In principle, it is also possible
to simply load a different robot model into CoSiMA and
the VR environment without any structural changes to the
architecture (R3).

Finally, reusability (R4) is supported through using the
Orocos component framework, which allows to load entire
controller components, robot models, and simulation tools
from a Orocos Component Library (ocl). This greatly fa-
cilitates reuse and sharing of components, and the actual
deployment. Note that also domain-specific language (DSL)
based programming tools for this part of the system are
available to further simplify the system design using CoSiMA
[16], but their discussion is beyond the scope of this paper.

Retargeting workflow

The motion capture
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tracking system)
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A. Retargeting human trajectories

B. Retargeting ball trajectories

Fig. 3. Retargeting workflow: Human captured kinematic trajectories for
the robot (A). Offline re-evaluation of motion using robot constraints and
the retargeting of the ball trajectory (B). Machine learning of the mapping
from ball trajectory parameters to parametric space of kinematic motion
primitives for generative motion synthesis (C).

III. TRAJECTORY GENERATION

Therapeutic juggling requires a very flexible trajectory
generation that serves as input for the whole-body real-time
motion control. This is highly non-trivial: if the throw is
on target, but kinematically infeasible, then the robot cannot
track it precisely and would miss the target. If however the
motion is retargeted to be feasible for the robot, it will not
be on the target as in the demonstration. Furthermore, we
assume that human-like throws are beneficial for the patient
and therefore make the trajectories as human-like as possible.
That is actually a useful hypothesis, which we can test only
if such learning is realized. Therefore, trajectory generation is
performed in several steps shown in Figure 3. These together
guarantee that a motion generator can be learned so that it
produces feasible, on-target human-like trajectories in real-
time for some given throwing target as input to the whole-body
motion control (cmp. Figure 2).

Motion capture from human throws: Subject’s underhand
ball throwing movements were captured using a Vicon
(Vicon Motion Systems, Oxford, UK) optical tracking system,
exploiting the software NEXUS. The full body trajectories
were cropped to the interval between the start of the arm
motion from the relaxed downwards position until the moment
of ball release.

Retargeting of human trajectories: Arm trajectories were
retargeted to the robot using a two-stage process. As first
step, we retargeted the whole body trajectory to the COMAN

1http://cogimon.github.io/
2http://cogimon.eu



skeleton using Motion Builder (MB, Autodesk) exploiting the
built-in IK and geometry rescaling tools of the Motion Builder.
The results are joint-center trajectories of the COMAN
skeleton that reproduce the timing of the human subjects,
however ignoring joint limits. As second step, given the
joint centers positions for each time point, we re-estimated
trajectories compatible with the COMAN kinematic chain
using MATLAB with a customized IK tool that takes into
account constraints defined by the joint angle limits. The
results are trunk and right arm angle values for every time
step. Next, this right arm and shoulder trajectory was played
back using the same kinematic model in MATLAB, keeping
all other body joints constant. In addition, the starts of the
trajectories were matched to the angle values of the parking
position of the robot. These hand frame trajectories then
form the reference input for the whole body controller in
the robot simulator. From the resulting new arm trajectories
the resulting hand position, orientation and corresponding
velocities at the moment of ball release were determined as
critical parameters that control the ball trajectory.

Retargeting of ball trajectories: Since the robot’s geometric
parameters differ from the human ones, but the timing
of the movements is preserved, the ball release velocity
must be rescaled accordingly. Additionally, the robot’s hand
orientation at the moment of release differs from the human
one after retargeting of the arm trajectory (though the
rotational velocities often are very similar). We simplified the
ball retargeting by approximating the release velocity through
a) rescaling of absolute ball velocity and b) reproduction of
the initial flying direction at the release moment. We used
as scaling factor of the absolute ball velocity the ratio of the
absolute velocities of the hand center of the robot (retargeted
motion) and of the human (original data). To re-compute the
ball direction vector we estimated the rotational coordinate
transform between the hand frames of original and retargeted
motion at the moment of ball release. We then applied this
transformation to the direction vector. As next step, we re-
simulated a simple parabolic flight trajectory of the ball that is
compatible with the computed initial velocity. This simulation
neglects air-drag forces. The workflow block scheme on the
Figure 3 depicts the relations between different stages of the
retargeting procedures.

Learning of the generative model: For learning, the arm
trajectories are represented as time series of joint angle
values, starting from the parking position until the moment
of ball release. The arm trajectories were represented by an
anechoic mixture model, a linear weighted mixture of time-
delayed basis functions (‘source functions’ [17]). We learn
the shapes of source functions and the parameters of anechoic
mixture model by our customized algorithm [18] and save all
these parameters together with the real-time value from the
moment of motion start until ball release. For the generation
of throwing trajectories we learn statistically the map from
the target parameters onto the mixing parameter space for the
motion primitives, i.e. the space of anechoic mixture weights
and mean values. The resulting mapping is constructed in
two steps. First, we learn the map from the space of target

parameters onto the release timing and corresponding ball
velocity. Second, we learn the map from the space of target
parameters extended by these two parameters (timing and
ball velocity) onto the space of anechoic mixture weights and
mean values. The underlying function is learned by Locally
Weighted Linear Regression (LWLR) [19]. Once this offline
learning is performed, the evaluation of a new motion for
desired target parameters can easily be executed in real-time.

IV. QP-BASED WHOLE-BODY MOTION GENERATION

This section describes the actual real-time control of the
(simulated) robot (cmp. Fig.2, central block), whereas it
receives a reference input trajectory for the wrist point
as provided in the previous section. The (simulated) robot
executes the joint motion and releases the ball at the desired
time, which then follows a parabolic trajectory. The robot’s
base link position and orientation, the joint angles, and the
ball coordinates are provided as output in each control cycle
and further processed by the VR module as described in the
next Section.

The controller solves a cascade of QP problems which
take into account a number of tasks or constraints. We first
introduce the notation for defining constraints for the whole-
body control of the COMAN and elaborate on the concrete
selection of priorities subsequently.

Definitions and notation: Classical approaches to inverse
kinematics problem such as [20] cannot deal with inequality
constraints and they are susceptible to ill-conditioned Jaco-
bians. In recent years, it has therefore become popular to
solve constraint quadratic programs instead [21], [22], which
belong to the general class of convex optimization problems
[23]. We formulate QP at velocity level3: for an n-DOF
robot and given desired end-effector velocity ẋ, calculate the
required joint velocities q̇ to minize the kinetic energy

argmin
q̇

q̇THq̇

2
(1)

s. t. Jq̇ = ẋ (2)

ξ̇− ≤ q̇ ≤ ξ̇+, (3)

where H ∈ Rn×n is the inertia matrix. It yields the minimum
norm solution for H = I . (1) is the cost function and (2)
and (3) are the equality and inequality constraints.

The bilateral constraint represented in (3) by ξ̇− and ξ̇+

is the secondary lower and upper limits of joint velocity
considering the real limits of joint position (q−, q+) and
joint velocities (q̇−, q̇+) as

ξ̇− = max(q̇−, µ(q− − q))
ξ̇+ = min(q̇+, µ(q+ − q)). (4)

The parameter µ tunes how the joint limits will be avoided.
An equivalent formulation has been proposed in [24] and

[22] by eliminating the equality constraint (2) because the

3QP also exists in the acceleration level [21] to minimize the torque or
acceleration norm which is out of focus of this paper.



Jacobian in equation (2) is sometimes rank-deficient:

q̇ = argmin
q̇∈S

1

2
‖Jq̇ − ẋ‖. (5)

The set S is expressed in closed-form as

S = {J†ẋ+ (I − J†J)ν,ν ∈ Rn}, (6)

where J† is the pseudo-inverse of the Jacobian. ν is an
arbitrary vector projected on the null-space of J .

Hierarchy of multiple constraints: When more than one
cost function needs to be minimized, the solution to one
constraint is either as important as some other solutions (soft
constraint) or must lie in the null-space of previous solutions
(hard constraint).

A set of generic tasks including equality constraints Ti =
〈Ji, ẋi〉 along with inequality constraints Ci = 〈Ai, bi〉 can
be put together to form a ‘cascade of QP problems’

argmin
q̇

1

2
‖q̇‖ s.t. (7)

Ti := q̇i = argmin
q̇∈Si

1

2
‖Jiq̇ − ẋi‖ (8)

Ci := Aiq̇ ≤ bi (9)

where Ji, ẋi and q̇ represent the corresponding Jacobian
and desired Cartesian and joint velocity vectors of the ith

equality constraint (Ti).Ai and bi determine the ith inequality
constraint (Ci, if there is any)4. In practice, the bilateral joint-
velocity limits (4) are the outcome of the unification process
of equation (9) where, Ai = I and bi = {bli, bui }.

Hard constraint: A fundamental observation from the
closed-loop expression of (6) is that the vector ν gives some
freedom in the control of the system. A potential secondary
objective can be satisfied in the null-space of the primary
task without affecting it [20]. This leads to a hierarchy of
kinematic tasks of decreasing priority.

Soft constraint: If p tasks have the same priority level, all
respective equality constraints 〈J1, ẋ1〉 . . . 〈Jp, ẋp〉 have to
be realized simultaneously. The solution is then obtained by
stacking them into a single task 〈J , ẋ〉 where

J =

J1

...
Jp

 , ẋ =

ẋ1

...
ẋp

 . (10)

The same rule applies on inequality constraints
〈A1, b1〉 . . . 〈Ap, bp〉 resulting in 〈A, b〉 where

A =

A1

...
Ap

 , b =

b1...
bp

 . (11)

The resulting QP is solved while satisfying all of the tasks
simultaneously. A weighting matrix ψ is often used to give
more importance to some constraints.

A. Stack of tasks for throwing
Figure 4 shows the structure of hard and soft constraints

and their level of priority.

4Calling these functions as task or constraint is only a matter of context.

Throwing arm (right):

Left leg & Right leg:

Waist:

Postural:4

3

2

1

Priority level
Equality constraint Inequality consttraint

-

-

-

Fig. 4. A graphical scheme of different levels of task priorities and their
corresponding equality and inequality constraints.

Legs task: In our setting, it is crucial that the tasks for
the robot legs have the highest priority in the cascade of QP
problems since slipping compromises the stability. The tasks
for left and right legs share the same hard priority level while
all the remaining tasks are solved in the solution space of
this level. That is, the legs have a hard-constraint relationship
with other tasks, however, between each other they form a
soft-constraint relationship

T
LEGS

= 〈[ψ
R
J
RL
, ψ

L
J
LL
]T, [ψ

R
ẋ∗

RL
,ψ

L
ẋ∗

LL
]T〉. (12)

ψ
R

and ψ
L

in (12) are two diagonal matrices that determine a
relative, soft priority between left and right legs. The desired
velocity vectors ẋ∗

LL
and ẋ∗

RL
are treated similar to Cartesian

component of (13).
At this level, all inequality constraints are also applied, i.e.

they are always satisfied even during the subsequent priority
levels. For the COMAN whole-body motion joint limits,
velocity limits and constraints on the Center of Mass (CoM)
have to be fulfilled at the top level (or equivalently every
level). The constraints on CoM limit its height above ground
and used bounds to ensure that the projection of CoM on the
ground is within the convex hull of the support polygon.

Right arm task: The right arm task, responsible for throw,
has the next priority level and is defined as

TRA = 〈JRA , ṗ
∗
RA

+ λRA(p
∗
RA
− p

RA
)〉, (13)

where JRA is the task Jacobian at the end-effector, ṗ∗
RA

is the
desired linear and angular velocity of the task, and (p∗

RA
−p

RA
)

forms an error vector between the desired and the real pose
of the end-effector and prevents error accumulation. λ

RA
is

a diagonal matrix determining positive gain parameters.
Waist task: To maintain upright orientation of the torso

(waist), rotation along x, y axis is prevented while rotation
along z is remains unconstrained. This is based on the
assumption that keeping torso orientation fixed in roll and
pitch results in a more human-like motion. It is realized
through the following orientation-only constraint

T
W

= 〈Jo
W
, λo

W
δε

W
〉, (14)

where Jo
W

represents the rotational part of waist Jacobian
and δε

W
is the orientation error of waist expressed in unit

quaternions. λo
W

represents a diagonal matrix of the gains.
Assume quaternion representation of the waist orientation
o

W
= [η

W
, ε

W
], where η

W
and ε

W
are respectively the scalar

and the vector part. According to [25], the orientation error in
(14) w.r.t the desired orientation (represented by superscript



‘∗’) can be obtained form

δε
W

= η∗
W
ε
W
− η

W
ε∗
W
+ skew(ε∗

W
)ε

W
, (15)

where ‘skew ’ represents a skew symmetric matrix.
Postural task: To ensure a natural throw, it is crucial

to consider a postural task in the null-space of Jacobian
of the throwing arm (e.g., shoulder-down). This is done
by considering a hard-constraint relationship between the
throwing arm task and the postural task. This task is defined
in the joint-space as

TN = 〈Im, λN
(q∗

N
− q)〉, (16)

where Im ∈ Rm×m is the identity matrix, m is the number
of DOF of the throwing arm and q∗

N
is the desired joint

behavior.
Other tasks such as capture point [26] and regularization

of centroidal linear/angular momentum [27] were tested but
did not improve robot movements. This is in part due to
the fact that the target of propose architecture are patients
with limited motor functions and throws are generated by
rather small Cartesian velocities. However, if faster throws
are needed, then capture point for recovery through stepping
and centroidal momentum for improved balance proves to
be useful. In the attached video submission some of these
simulations are presented.

V. VIRTUAL REALITY SYSTEM

As long as throwing is only simulated, the respective robot
and ball movements need to be presented to the patient
(or more general: the user) in a meaningful manner for the
physiotherapy to be effective. Our solution is to utilize a
virtual environment (VE), where the patient can both observe
the robot (Fig.7) and interact with the ball. The patient
experiences the virtual environment via the HTC Vive system,
which consists of head mounted display (HMD) and two
controllers for motion tracking and ball catching action. One
controller is securely attached to the patients right arm and
second is held in right hand, where pressing a trigger executes
the catching action in the VE.

The VR environment was realized using Unity 2017.3 game
engine and consists of the following main building blocks:
• Virtual room A virtual environment that is presented to

the patient. Great effort was made to design the room
in order to enhance the effect of immersion and to be
stimulating but not distracting to the user.

• Robot and ball animator A direct output of the current
scene state as produced by the simulator and described
in the previous Section. The virtual robot is an exact
match of the URDF and meshes that are also used in
the simulator. The robot and ball are animated using
the data received via the RSB communicator (see also
Fig. 2). The data transfer latency was measured to be
approximately 1 ms, which is way below the critical
level of about 10ms to running the VR system. The RSB
link for the ball is broken on the successful catch of the
ball by the user, when the control of the ball is taken
over by the user or Unity physics engine until the start

of the next throw. Also note that the robot and the ball
motion are proportionally scalable such that the user can
experience larger and smaller robots accordingly.

• User controller An interpreter of patient’s actions. The
movement and actions of the patient are interpreted
using SteamVR plugin, running with approximately 5
ms latency.

Altogether, the VR environment runs sufficiently fast to create
a realistic, real-time animation. It is also sufficiently fast to
provide feedback to the motion generation for creation of
new targets in the loop [13].

VI. PERFORMANCE VALIDATION

The proposed architecture and controller are put to the test.
Two different aspects are validated: the functionality of the
building blocks in the CoSiMA/Orocos environment and of
the fully integrated system and the timing.

We used the following libraries and tools during in this
validation run (note that the modularity of the system would
allow for exchange of these tools):
• quadratic programming Online Active SEt Strategy

(qpOASES) as the solver [28]
• Rigid Body Dynamics Library (RBDL) as a real-time-

safe tool for kinematic and dynamic computations [29].
It is suitable for computations regarding the humanoid
robot since it supports kinematic trees and floating bases.

• OpenSoT as an open-source real-time-safe interface li-
brary to facilitate the definition of equality and inequality
constraints [30]. It interfaces with RBDL and qpOASES
and provides an easy-to-use chain for creating constraints
for robot description (e.g., URDF and SRDF).

• Gazebo as a dynamic simulation environment [31] using
ODE as physics engine [32]

The variation of cycle times for two important and
computationally demanding components of the system, the
robot simulator and qp IK, are depicted in Figure 5. The
cycle time of each component was tested over 2000 data
samples. The repeatability of the generated joint motion in
10 consecutive throws was examined. Figure 6 shows the
Cartesian trajectories of the thrown balls from the release
point until the first ground contact. The grasp and release
of the ball is simulated using a two-state (on/off) gripper
realized by grasp plugin5. Detailed simulation of ball release
is beyond the scope of this work.

The overall system integration was verified in a compre-
hensive setup shown in Figure 1. We captured 23 underhand
ball-throwing movements performed by a single right-handed
subject and generated the corresponding retargeted hand
trajectories. To test the full pipeline and the VR setting with
the user in the loop, one motion was repeated successfully
more than 50 times. Then, a number of different throwing
trajectories were generated offline and stored to create
a repeatable and demonstrable system, It can load the
trajectories, run them in the simulator and present them in VR
to a subject wearing HMD. Preliminary tests show that users

5https://goo.gl/ETJ44s
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Fig. 5. Timing specification for qp-IK solver (top) and robot component
(bottom). The red line shows the worst cycle time.
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Fig. 6. 10 throws of the ball: Given a suitable release, the main sources of
error are small variations in the end-effector pose and velocity of the throw
arm at the release moment.

are able to interact with the virtual representation of the robot
in simulation which is manifested through successful catches
of the ball. A representative example of one interaction trial
is depicted in Figure 7. The possibility robot scaling in VR
is demonstrated in Figure 8, which we assume useful to
accommodate variance for the user’s body height.

VII. CONCLUSION

The paper presented an unprecedented and novel com-
bination of real-time motion generation based on retarget-
ing human motion, real-time robot control and VR for
therapeutic juggling. The current system provides a rather
intermediate, but already fully functional stage towards the
long-term goal to deploy it with the real robot in actual
therapeutic intervention. But it already meets the technological
requirements for such advanced usage and the presented
runtime experiments show that the system reaches the required
real-time performance. The control already is suitable for
switching to the real robot. However, there are still crucial

questions to solve. The likely most difficult part will be to
realize a reproducible release of the ball with a real robot hand,
although in a real therapeutic game a certain variance will
be tolerable. But what is acceptable and useful for different
kinds of patients and impairments will certainly need careful
investigation.

The presented system nevertheless provides the technolog-
ical basis to conduct a number of interesting experiments.
These can advance our knowledge about human-robot interac-
tion in VR in general and provide information how to set up
possible therapeutic intervention in particular. For example,
possible studies are: (i) Do humans actually perceive the
naturalness of the generated robot motion in comparison to
purely kinematic animation that does not respect the feedback
from the robot dynamics, or animation of an avatar? Our
initial subjective experience with the system suggests so.
(ii) Do humans perceive the difference between retargeted
human throwing motion, as it is proposed in this paper, and
analytically generated throwing motion? (iii) How do patients
perceive the robot and will they engage in the throwing game?
(iv) Is it important to scale the robot and the motion with
respect to the body height of the user? (v) How to organize and
exploit feedback from the VR for actual gamification of the
interaction and how will it influence the user’s engagement?
These are exiting perspectives already, but ultimately the
system is meant to be used in therapeutic intervention and
shall be evaluated according to the usual clinical standards. We
are convinced that we have laid the technological foundation
for this feat.
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